
Feuilles-réponses à rendre détachées.

PENSEZ A REPORTER VOTRE NUMERO D'ANONYMAT SUR CHAQUE FEUILLE.

Q1.	Ecrire la formule semi-développée de la molécule de caféine en y faisant figurer les doublets non-liants. Amine Amide	2
Q2.	Sur le schéma précédent, entourer et nommer 2 groupes fonctionnels différents.	1
Q3.	Déterminer la formule brute de la caféine. $ C_8 H_{10} N_4 O_2 $	0.5
Q4.	À l'aide des données fournies, évaluer la concentration molaire approximative de la caféine dans le soda. On sait qu'un volume V=66 cL (deux canettes) de Coca contient environ 75 mg de caféine. La concentration en masse de caféine du Coca est donc $t_{caféine} = \frac{75}{0.66} = 1.14 \times 10^2 \ mg/L$. M(caféine) = 8 M(C) + 10 M(H) +4 M(N) + 2 M(O) = 194 g.mol ⁻¹ On en déduit la concentration molaire en caféine : $c_{caféine} = \frac{t_{caféine}}{M_{caféine}} = 5,86 \times 10^{-4} \ mol.L^{-1}$	3
Q5.	Dessiner l'ampoule à décanter de l'étape 2 et indiquer la position des phases aqueuse et organique. Dans quelle phase se trouve la quasi- totalité de la caféine extraite? Justifier vos réponses. La phase aqueuse possède une densité proche de 1, tandis que le dichlorométhane possède une densité de 1,30. La phase supérieure est la moins dense. La solubilité de la caféine dans l'eau est faible à 25°C tandis que la solubilité de la caféine est importante dans le dichlorométhane. Donc la caféine passe de la phase aqueuse à la phase organique (dichlorométhane).	1
	TOTAL	8.5

	Dans l'étape 2, quelle technique est mise en œuvre ?	
Q6.	extraction liquide-liquide	1
	Quel est le rôle du sulfate de magnésium anhydre utilisé dans l'étape 3 ?	
Q7.	Le sulfate de magnésium anhydre réagit avec l'eau éventuellement encore présente dans la phase organique. Il déshydrate la phase organique .	1
	Nommer une technique de purification d'un solide.	
Q8.	On peut procéder à une recristallisation .	1
	Citer une méthode d'identification d'un solide	
Q9.	Un solide peut être identifié en mesurant sa température de fusion au banc Kofler.	1
	Schématiser et légender ce montage	
Q10.	Sortie d'eau Réfrigérant à boules Ballon Chauffe ballon	2
Q11.	En utilisant les données, justifier le chauffage. La solubilité de la caféine augmente avec la température. Ainsi en chauffant, on permet à la caféine de mieux se dissoudre dans l'eau.	1
Q12.	Parmi le matériel suivant, indiquer celui utilisé pour préparer la solution de caféine de concentration 16 mg.L $^{-1}$. Justifier votre choix. On procède à une dilution. Solution mère : Solution fille : $t_0 = 32 \text{ mg.L}^{-1}$ $t_1 = 16 \text{ mg.L}^{-1}$ V_0 à prélever V_1 $F = \frac{t_0}{t_1} = 2,0 \qquad \text{avec } F = \frac{V_1}{V_0} \text{d'où le choix de la fiole jaugée de 50 ,0 mL pour V}_1 \text{ et la pipette jaugée de 25,0 mL pour V}_0.$	2
	TOTAL	9

Q13.	Dans quel domaine de longueurs d'onde travaille-t-on ? $\lambda < 400 \text{ nm, donc les radiations utilisées appartiennent au domaine des ultraviolets.}$	1
Q14.	Proposer une longueur d'onde optimale pour régler le spectrophotomètre. L'absorbance étant maximale pour λ = 271 nm , on choisira cette longueur d'onde pour effectuer les mesures afin d'avoir une plus grande précision.	1
Q15.	Comment allez-vous faire le « blanc » ? On mesure l'absorbance d'une cuve remplie de solvant, en l'occurrence le dichlorométhane	1
Q16.	Sans changer les réglages du spectrophotomètre, on mesure l'absorbance de la boisson diluée 10 fois. On trouve $A_1 = 0,35$. Déterminer précisément la concentration en caféine de la boisson. Détermination de A soit par lecture graphique puis utilisation d'une échelle, soit par détermination du coefficient directeur de la droite. On détermine le coefficient directeur de la droite : le point $(16, mg/L; 0,50)$ est sur la droite. Le coefficient directeur de la droite d'étalonnage est donc : $k = \frac{0,50}{16} = 3,1 \times 10^{-2} L.mg^{-1}$. On en déduit alors la concentration en masse de caféine de la solution diluée : $t_1 = \frac{A_1}{k} = 11,2 \ mg.L^{-1}$. La boisson est 10 fois plus concentrée donc $t = 1,12 \times 10^2 \ mg/L$	3
Q17.	Cette concentration est-elle cohérente avec la valeur obtenue à la question Q4 ? On calculera un écart relatif. A la question Q4 , on a trouvé $t_{caféine} = 114 \ mg/L$. On calcule alors l'écart relatif : $\%e = \frac{114-112}{114} \times 100 \approx 2\%$. Les deux valeurs sont donc très proches.	1,5
	TOTAL	7,5

On trace la courbe pH=f(V).

Elle permet de déterminer le volume équivalent du titrage : V_E =5,2mL par la méthode des tangentes parallèles : V_E =5,2 mL

 $\text{L'\'equation de la r\'eaction support}: H_3PO_{4(~aq)} + HO_{(~aq)}^- \rightarrow H_2PO_{4(~aq)}^- + H_2O_{(~\ell)}$

Q18.

A l'équivalence du titrage, les réactifs de la réaction support ont été apportés dans les proportions stœchiométriques de la réaction support : $n(H_3PO_4)_{app} = n(HO^-)_{app, Eq}$ soit

$$CV_E = c_A V_0 \Rightarrow c_A = \frac{V_E}{V_0} C.$$
 A.N: $c_A = 5.2 \times 10^{-3} \text{ mol.} L^{-1}$

Dans une bouteille de volume V=1,5 L, la masse d'acide phosphorique est donc : $m_A = c_A V M_A = 0,76 \ g$

D'après les informations, une personne de 70 kg peut donc consommer une masse de 4,9 g (70 mg/kg/jour). Une personne adulte de masse 70 kg peut donc consommer environ 6 bouteilles de soda sans risque.

7

TOTAL

	Evaliguer neurousi see deux melécules sent incret res	
	Expliquer pourquoi ces deux molécules sont isomères. La formule brute de ces deux molécules est $C_6H_{12}O_6$	
Q19.	Ces deux molécules ont même formule brute, mais des représentations semi-développées	1,5
Q19.	différentes, elles sont donc isomères (isomérie de fonction non attendue)	1,5
	Expliquer, en vous aidant des textes introductifs, pourquoi les boissons énergétiques qui mélangent plusieurs types de glucides sont conseillées pendant un marathon.	
Q20.	Il faut à la fois des sucres à haut indice glycémique (glucose, maltodextrine) qui fournissent directement de l'énergie aux cellules musculaires, et des sucres à faible indice glycémique comme le fructose, qui vont fournir de l'énergie sur le long terme. L'objectif est de retarder l'apparition de la fatigue en épargnant les réserves hépatiques et musculaires en glycogène.	1
	Quel volume maximal d'une solution à 0,30 mol.L ⁻¹ , contenant 1,5 fois plus de glucose que de fructose, le coureur peut-il boire par heure ?	
	Le glucose et le fructose sont isomères, ils ont la même formule brute et donc la même masse molaire.	
	On détermine la concentration massique : Cm = C x M = 0,30 x 180 = 54 g.L ⁻¹	
Q21.	Le coureur ne doit pas absorber plus de 60 g de glucides par heure. On calcule le volume correspondant :	2
	$V = \frac{m}{Cm} = \frac{54}{72} = 0,75 L$ Ce volume est bien inférieur aux 800 mL à ne pas dépasser.	
	Le coureur devra donc boire 750 mL de sa boisson par heure, par exemple 5 fois 15 cL.	
	Écrire la demi-équation électronique de la réduction de l'acide pyruvique en acide lactique. Justifier qu'il s'agit bien d'une réduction.	
Q22.	$C_3H_4O_3 + 2H^+ + 2e^- = C_3H_6O_3$	1
	Il y a gain d'électrons, c'est une réduction.	
	Le nom de l'acide lactique en nomenclature officielle est acide 2-hydroxypropanoïque. Entourer les groupes caractéristiques et justifier son nom.	
Q23.	L'acide lactique est un acide carboxylique dont la chaine principale possède 3 atomes de carbone (donc acide propanoïque). Le carbone n°2 porte un groupe hydroxyle	1
	TOTAL	6.5

Q24.	Écrire l'équation de la réaction acido-basique de l'acide lactique avec l'eau à l'aide des représentations de Lewis. $H_3C \longrightarrow H$ H	2
Q25.	En utilisant le formalisme des flèches courbes, indiquer le mécanisme réactionnel.	1
Q26.	Construire le diagramme de prédominance du couple acide lactique / ion lactate. pKa=3,9 ———————————————————————————————————	1
Q27.	En utilisant le diagramme précédent, commenter la remarque de ce sportif. A pH=7,4 , c'est l 'ion lactate qui prédomine dans le sang , la remarque de ce sportif n'est pas correcte scientifiquement	2
Q28.	Les spectres Infrarouge de l'acide lactique et du lactate d'éthyle sont donnés ci-dessous. Associer chaque spectre à la molécule correspondante en justifiant. Pour pouvoir identifier les 2 molécules, il faut déterminer ce qui les différencie sur le spectre: - Les bandes associées aux liaisons C=O d'un acide carboxylique et d'un ester sortent vers 1700 cm-1: impossible de les différencier. - La liaison OH du groupe carboxyle n'est présente que sur l'acide lactique. Elle se manifeste par une bande large, d'intensité moyenne, entre 2500 et 3200 cm-1. On peut en déduire que le spectre IR2 est celui de l'acide lactique: On observe un très large pic entre 2500 et 3400 cm-1, qui englobe la liaison OH de l'alcool (vers 3400 cm-1), les liaisons CH (petit pic vers 3000 cm-1) et la liaison OH de l'acide (petit pic vers 2500 cm-1). Au contraire, sur le spectre 1, on observe nettement une bande intense à 3500 cm-1 (OH de l'alcool) et une autre bande plus fine à 3000 cm-1 pour les liaisons CH.	2
Q29.	Quel est le rôle joué par l'acide sulfurique ? C'est un catalyseur, qui accélère la réaction mais n'apparait pas dans le bilan réactionnel car il est régénéré en fin de réaction	1,5
	TOTAL	9.5

	Vérifier par calcul que l'éthanol est en excès dans les procédés a et b décrits précédemment.	
Q30.	$n(ac.lactique) = \frac{m(ac.lactique)}{M(ac.lactique)} = \frac{39,1}{90,0} = 0,434 \ mol$ $n(\acute{e}thanol) = \frac{m \ \acute{e}thanol}{M \ \acute{e}thanol} = \frac{p\acute{e}thanol \times V \ \acute{e}thanol}{M \ \acute{e}thanol} = \frac{0,789 \times 84,0}{46,0} = 1,44 \ mol$ La réaction s'effectuant mole à mole, le réactif limitant est celui introduit en plus petite quantité : l'acide lactique est le réactif limitant et l'éthanol est introduit en excès.	3
Q31.	En utilisant la figure 3, comparer les rendements obtenus par les deux procédés et indiquer le procédé le plus efficace. Le rendement obtenu par le procédé b est toujours supérieur à celui obtenu par le procédé a, le procédé b est donc plus efficace que le a.	1
Q32.	Calculer la masse de lactate d'éthyle obtenue expérimentalement avec le procédé le plus rapide. Le rendement obtenu par le procédé b est d'environ 82%. Le réactif limitant étant l'acide lactique, le rendement s'exprime par : $ \eta = \frac{n(lact.\acute{e}thyle)_{exp}}{n(lact.\acute{e}thyle)_{max}} = \frac{n(lact.\acute{e}thyle)_{exp}}{n(ac.lactique)_i} \Rightarrow n(lact.\acute{e}thyle)_f = 0.82 \times n(ac.lactique)_i $ Finalement : $m(lact.\acute{e}thyle)_{exp} = 0.82 \times M(lact.\acute{e}thyle)n(ac.lactique)_i$ A.N: $m(lact.\acute{e}thyle)_{exp} = 42 \ g$	3
Q33.	Donner l'expression du quotient Qr de la réaction d'estérification étudiée. $Q_r = \frac{\begin{bmatrix} \text{Lactate d'éthyle} \end{bmatrix} \cdot \underbrace{\begin{bmatrix} \text{eau} \end{bmatrix}}{C^0} \cdot \underbrace{\begin{bmatrix} \text{Colde lactique} \end{bmatrix}} \cdot \underbrace{\begin{bmatrix} \text{ethanol} \end{bmatrix}}_{\begin{bmatrix} \text{acide lactique} \end{bmatrix}} \cdot \underbrace{\begin{bmatrix} \text{colde lactique} \end{bmatrix}}_{\begin{bmatrix} \text{colde lactique} \end{bmatrix}} \cdot \underbrace{\begin{bmatrix} \text{ethanol} \end{bmatrix}}_{\begin{bmatrix} \text{colde lactique} \end{bmatrix}}_{\begin{bmatrix} \text{colde lactique} \end{bmatrix}} \cdot \underbrace{\begin{bmatrix} \text{ethanol} \end{bmatrix}}_{\begin{bmatrix} \text{colde lactique} \end{bmatrix}}_{\begin{bmatrix} \text{colde lactique} \end{bmatrix}} \cdot \underbrace{\begin{bmatrix} \text{ethanol} \end{bmatrix}}_{\begin{bmatrix} \text{colde lactique} \end{bmatrix}}_{\begin{bmatrix} $	1
Q34.	Le lactate d'éthyle étant plus soluble dans le solvant introduit dans le procédé b que dans la phase de départ (acide lactique, éthanol), justifier que l'ajout d'un solvant lors de la synthèse du lactate d'éthyle permette de déplacer l'équilibre de la réaction d'estérification. Le lactate d'éthyle formé étant plus soluble dans le solvant ajouté que dans la phase de départ, on peut considérer qu'il est extrait de la phase de départ au fur et à mesure de sa formation, c'est-à-dire que sa concentration y est nulle. Or si [lactate d'éthyle] =0 alors Qr = 0 < Q _{r,éq} . On peut donc dire que l'on déplace l'équilibre dans le sens direct (gauche → droite).	2
	TOTAL	10